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Introduction



Overview

Task:
• Extracting a target object
from a pile of other objects in
a cluttered environment.

• Prehensile grasping is
impossible due to clutter

Policy:
• Pushing policy for singulating
the target object.

• A novel Split Q-learning
algorithm is proposed

Target
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Environment and Assumptions



Environment and Assumptions

Environment:
• A target object with
known pose {O} and
bounding box, placed
on a support surface.

• Poses, dimensions and
the number of
obstacles are random
and unknown.

{O}
b

sd1

sd2

sd3

sd4

x

y

z

Assumptions:
• Availability of:

• Robotic finger for pushes
• RGB information for pose
estimation of target

• Depth information for state
representation

• Collisions between the fingertip and
an object can be detected.

• Pushing actions result in 2D motion
of the target. No flipping is expected.
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Environment and Assumptions

Singulation
Singulation means that the target object is separated from the
closest obstacle by a minimum distance dsing.

Objective
Singulate the target object from its surrounding obstacles by:

• using the minimum number of pushes and
• avoiding to throw the target off the support surface’s limits.
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MDP Formulation



MDP: Actions

• A pushing action:
P = (p0, d, θ)

• Push target object

• Placing the finger beside
the target

• Risk of undesired collision
with an obstacle

• Push obstacle

• Placing the finger above the
target for pushing obstacles

• Risk of empty push

• d predetermined and θ

discretized in w pushing
directions

• 2w total discrete actions.

θ
t d

p0

pf

p0

Figure 1: Push target

p0

θ d

p0

pf

Figure 2: Push obstacle
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MDP: State

x8

st= [f1, . . . , f8]

scene

aligned 

point cloud heightmap
rotated heightmaps feature extraction

+ b, θi, sd

• Transform the point cloud w.r.t. {O}
• Generate heightmap.
• Rotate heightmap w times.
• For each rotation:

• Define a 16x16 region and average the values of the heightmaps

zij =
1

cx · cy

x2∑
x=x1

y2∑
y=y1

hi(x, y)

• Add the bounding box, the rotation angle and the distances of the
target from the table limits sd.
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MDP: Rewards and Terminal states

Sparse reward function for each timestep:

• Singulation r = +10 (successful terminal state)
• Falling off the table r = −10 (failed terminal state)
• Undesired collision r = −10 (failed terminal state)
• Empty pushes r = −5
• Otherwise: r = −1
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Split DQN



Split DQN

• One fully connected network for
each primitive.

• Policy: argmaxaction Q(state,action)

maxQ = max (maxQ1(fi),maxQ2(fi))

• Advantages:

• The rotation invariant features
simplifies learning

• Training on data that comes from
the same distribution (same
primitive) results to faster learning

• Inherent modularity for adding new
primitives.
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Figure 3: Split DQN
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Experiments



Experiments

Video

8/14



Results: Performance Evaluation

Policy Success Mean Std Mean Std

rate actions actions reward reward

Human 95.0% 2.46 0.88 7.51 4.36
SplitDQN 88.6% 2.95 1.43 3.42 18.56
DQN 77.1% 4.02 2.12 -1.924 23.01

Random 22.1% 5.79 3.24 -10.17 8.79
SplitDQN (Real) 75.0% 2.71 1.18 -1.37 5.60
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Results: Training
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Extra primitive

Video
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Extra primitive: Performance Evaluation

Policy Success Mean Std Mean Std

rate actions actions reward reward

SplitDQN-3 83.4% 3.19 1.43 -2.64 20.92
SplitDQN-2 59.6% 4.42 1.77 -20.35 40.95
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Extra primitive: Training
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Conclusions



Conclusion

• Splitting Q network to use one network per primitive results to
faster convergence and increased success rate.

• The inherent modularity of the algorithm allows the addition of
extra primitives.

• Effective training in a complex environment.
• Demonstrating that the policy can effectively transferred to a
real world setup.
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Thank you for watching.
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