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INTRODUCTION



OVERVIEW

Task:
- Extracting a target object
from a pile of other objects in
a cluttered environment.
- Prehensile grasping is
impossible due to clutter
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OVERVIEW

Task: Policy:
- Extracting a target object - Pushing policy for singulating
from a pile of other objects in the target object.
a cluttered environment. - A novel Split Q-learning
- Prehensile grasping is algorithm is proposed

impossible due to clutter
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ENVIRONMENT AND ASSUMPTIONS



ENVIRONMENT AND ASSUMPTIONS

Environment:

- A target object with
known pose {O} and
bounding box, placed
on a support surface.

- Poses, dimensions and
the number of
obstacles are random
and unknown.
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ENVIRONMENT AND ASSUMPTIONS

Environment: )
Assumptions:

- Availability of:
- Robotic finger for pushes
- RGB information for pose
estimation of target

- A target object with
known pose {O} and
bounding box, placed
on a support surface.

- Poses, dimensions and - Depth information for state
the number of representation
obstacles are random - Collisions between the fingertip and
and unknown. an object can be detected.

- Pushing actions result in 2D motion
of the target. No flipping is expected.
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ENVIRONMENT AND ASSUMPTIONS

Singulation
Singulation means that the target object is separated from the
closest obstacle by a minimum distance dsjng.
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ENVIRONMENT AND ASSUMPTIONS

Singulation
means that the target object is separated from the
closest obstacle by a minimum distance dsjng.

Objective
Singulate the target object from its surrounding obstacles by:

- using the minimum number of pushes and

- avoiding to throw the target off the support surface’s limits.
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MDP FORMULATION



MDP: ACTIONS

- A pushing action:
P = (p07 da 6)

Figure 2: Push obstacle
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MDP: ACTIONS

- A pushing action:
P =(po, d, 0)
- Push target object
- Placing the finger beside
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- Risk of undesired collision
with an obstacle
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MDP: ACTIONS

- A pushing action:
P = (p07 da 6)
- Push target object

- Placing the finger beside
the target

- Risk of undesired collision
with an obstacle

- Push obstacle

- Placing the finger above the
target for pushing obstacles
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MDP: ACTIONS

- A pushing action:
P =(po, d, 0)
- Push target object
- Placing the finger beside
the target
- Risk of undesired collision
with an obstacle
- Push obstacle
- Placing the finger above the
target for pushing obstacles
- Risk of empty push

- d predetermined and 6

discretized in w pushing Figure 2: Push obstacle
directions

- 2w total discrete actions.
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MDP: STATE

aligned rotated heightmaps
point cloud heightmap

feature extraction
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- Transform the point cloud w.rt. {O}
- Generate heightmanp.

- Rotate heightmap w times.

- For each rotation:

- Define a 16x16 region and average the values of the heightmaps

X2 Y2
1

3 S e

X=X1 Y=Y

Zj =

- Add the bounding box, the rotation angle and the distances of the
target from the table limits sq.
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MDP: REWARDS AND TERMINAL STATES

Sparse reward function for each timestep:

- Singulation r = +10 (successful terminal state)

- Falling off the table r = —10 (failed terminal state)
- Undesired collision r = —10 (failed terminal state)
- Empty pushes r= -5

- Otherwise: r= —1
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SpLIT DQN

- One fully connected network for
each primitive.

I Q-value for
- pushing target
N Push Target Net
'; 263 . Q, with rotation 8
o —
=3
i
- —] Q-value for
7 | T "IPush Obstacle Net|Pushing obstacle
263 =
. Q, with rotation 8,
JE—

Figure 3: Split DON
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SPLIT

- One fully connected network for
each primitive.

- Policy: argmax,i,, Q(State, action)

— ] Q-value for
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. Push Target Net pushing tarect
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SpLIT DQN

- One fully connected network for
each primitive.

- Policy: argmax,i,, Q(State, action)

] Q-value for

> pushing target

Push Target Net

- 263 = !
max Q = max(max Q1( ,-),max Qz(f,)) : . Q with rotation 6,
- Advantages: i
- [E— Q-value for
- The rotation invariant features < | ——"[push Obstacle Net[Ps"ine obstacle

.
Q, with rotation 8,

simplifies learning
- Training on data that comes from
the same distribution (same
primitive) results to faster learning
- Inherent modularity for adding new
primitives.

Figure 3: Split DON
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EXPERIMENTS




EXPERIMENTS

Video
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RESULTS: PERFORMANCE EVALUATION

Policy Success Mean Std Mean Std
rate actions  actions reward reward
Human 95.0% 246  0.88 7.51 4.36
SplitDQN 88.6% 295 143 3.42 1856
DQN 771%  4.02 212 -1924 23.01
Random 221% 579 324 -1017 879
~ SplitDaN (Real) | 75.0% 271 118 -137 560
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RESULTS: TRAINING

Success rate

Mean Total Reward

50
Epochs of training episodes
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EXTRA PRIMITIVE

Video
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EXTRA PRIMITIVE: PERFORMANCE EVALUATION

Policy Success Mean Std Mean Std

rate actions  actions reward reward
SplitDON-3 | 83.4% 3.19  1.43 -2.64 2092
SplitbQN-2 | 59.6%  4.42  1.77 -20.35 40.95
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EXTRA PRIMITIVE: TRAINING

Mean Total Reward

Success rate
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Epochs of training episodes
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CONCLUSIONS




CONCLUSION

- Splitting O network to use one network per primitive results to
faster convergence and increased success rate.

- The inherent modularity of the algorithm allows the addition of
extra primitives.

- Effective training in a complex environment.

- Demonstrating that the policy can effectively transferred to a
real world setup.

1414



THANK YOU FOR WATCHING.
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